Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 648
Filtrar
1.
J Neurosci ; 41(17): 3764-3776, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33731449

RESUMO

The axon initial segment (AIS) is a specialized neuronal compartment in which synaptic input is converted into action potential (AP) output. This process is supported by a diverse complement of sodium, potassium, and calcium channels (CaV). Different classes of sodium and potassium channels are scaffolded at specific sites within the AIS, conferring unique functions, but how calcium channels are functionally distributed within the AIS is unclear. Here, we use conventional two-photon laser scanning and diffraction-limited, high-speed spot two-photon imaging to resolve AP-evoked calcium dynamics in the AIS with high spatiotemporal resolution. In mouse layer 5 prefrontal pyramidal neurons, calcium influx was mediated by a mix of CaV2 and CaV3 channels that differentially localized to discrete regions. CaV3 functionally localized to produce nanodomain hotspots of calcium influx that coupled to ryanodine-sensitive stores, whereas CaV2 localized to non-hotspot regions. Thus, different pools of CaVs appear to play distinct roles in AIS function.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is the site where synaptic input is transformed into action potential (AP) output. It achieves this function through a diverse complement of sodium, potassium, and calcium channels (CaV). While the localization and function of sodium channels and potassium channels at the AIS is well described, less is known about the functional distribution of CaVs. We used high-speed two-photon imaging to understand activity-dependent calcium dynamics in the AIS of mouse neocortical pyramidal neurons. Surprisingly, we found that calcium influx occurred in two distinct domains: CaV3 generates hotspot regions of calcium influx coupled to calcium stores, whereas CaV2 channels underlie diffuse calcium influx between hotspots. Therefore, different CaV classes localize to distinct AIS subdomains, possibly regulating distinct cellular processes.


Assuntos
Segmento Inicial do Axônio/fisiologia , Segmento Inicial do Axônio/ultraestrutura , Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios , Caveolina 2/efeitos dos fármacos , Caveolina 2/fisiologia , Caveolina 3/efeitos dos fármacos , Caveolina 3/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos
3.
Circ Res ; 128(3): 321-331, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33297863

RESUMO

RATIONALE: The class Ic antiarrhythmic drug flecainide prevents ventricular tachyarrhythmia in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by hyperactive RyR2 (cardiac ryanodine receptor) mediated calcium (Ca) release. Although flecainide inhibits single RyR2 channels in vitro, reports have claimed that RyR2 inhibition by flecainide is not relevant for its mechanism of antiarrhythmic action and concluded that sodium channel block alone is responsible for flecainide's efficacy in CPVT. OBJECTIVE: To determine whether RyR2 block independently contributes to flecainide's efficacy for suppressing spontaneous sarcoplasmic reticulum Ca release and for preventing ventricular tachycardia in vivo. METHODS AND RESULTS: We synthesized N-methylated flecainide analogues (QX-flecainide and N-methyl flecainide) and showed that N-methylation reduces flecainide's inhibitory potency on RyR2 channels incorporated into artificial lipid bilayers. N-methylation did not alter flecainide's inhibitory activity on human cardiac sodium channels expressed in HEK293T cells. Antiarrhythmic efficacy was tested utilizing a Casq2 (cardiac calsequestrin) knockout (Casq2-/-) CPVT mouse model. In membrane-permeabilized Casq2-/- cardiomyocytes-lacking intact sarcolemma and devoid of sodium channel contribution-flecainide, but not its analogues, suppressed RyR2-mediated Ca release at clinically relevant concentrations. In voltage-clamped, intact Casq2-/- cardiomyocytes pretreated with tetrodotoxin to inhibit sodium channels and isolate the effect of flecainide on RyR2, flecainide significantly reduced the frequency of spontaneous sarcoplasmic reticulum Ca release, while QX-flecainide and N-methyl flecainide did not. In vivo, flecainide effectively suppressed catecholamine-induced ventricular tachyarrhythmias in Casq2-/- mice, whereas N-methyl flecainide had no significant effect on arrhythmia burden, despite comparable sodium channel block. CONCLUSIONS: Flecainide remains an effective inhibitor of RyR2-mediated arrhythmogenic Ca release even when cardiac sodium channels are blocked. In mice with CPVT, sodium channel block alone did not prevent ventricular tachycardia. Hence, RyR2 channel inhibition likely constitutes the principal mechanism of antiarrhythmic action of flecainide in CPVT.


Assuntos
Antiarrítmicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Flecainida/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos , Taquicardia Ventricular/prevenção & controle , Potenciais de Ação , Animais , Sinalização do Cálcio , Calsequestrina/genética , Calsequestrina/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Carneiro Doméstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
4.
Cardiovasc Res ; 117(1): 123-136, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841141

RESUMO

AIMS: Connexin-based gap junctions are crucial for electrical communication in the heart; they are each composed of two docked hemichannels (HCs), supplied as unpaired channels via the sarcolemma. When open, an unpaired HC forms a large pore, high-conductance and Ca2+-permeable membrane shunt pathway that may disturb cardiomyocyte function. HCs composed of connexin 43 (Cx43), a major cardiac connexin, can be opened by electrical stimulation but only by very positive membrane potentials. Here, we investigated the activation of Cx43 HCs in murine ventricular cardiomyocytes voltage-clamped at -70 mV. METHODS AND RESULTS: Using whole-cell patch-clamp, co-immunoprecipitation, western blot analysis, immunocytochemistry, proximity ligation assays, and protein docking studies, we found that stimulation of ryanodine receptors (RyRs) triggered unitary currents with a single-channel conductance of ∼220 pS, which were strongly reduced by Cx43 knockdown. Recordings under Ca2+-clamp conditions showed that both RyR activation and intracellular Ca2+ elevation were necessary for HC opening. Proximity ligation studies indicated close Cx43-RyR2 apposition (<40 nm), and both proteins co-immunoprecipitated indicating physical interaction. Molecular modelling suggested a strongly conserved RyR-mimicking peptide sequence (RyRHCIp), which inhibited RyR/Ca2+ HC activation but not voltage-triggered activation. The peptide also slowed down action potential repolarization. Interestingly, alterations in the concerned RyR sequence are known to be associated with primary familial hypertrophic cardiomyopathy. CONCLUSION: Our results demonstrate that Cx43 HCs are intimately linked to RyRs, allowing them to open at negative diastolic membrane potential in response to RyR activation.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Potenciais de Ação , Animais , Agonistas dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Conexina 43/genética , Junções Comunicantes/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Miócitos Cardíacos/efeitos dos fármacos , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos
5.
Cardiovasc Res ; 117(4): 1091-1102, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32531044

RESUMO

AIMS: Despite numerous reports documenting an important role of hypertension in the development of atrial fibrillation (AF), the detailed mechanism underlying the pathological process remains incompletely understood. Here, we aim to test the hypothesis that diastolic sarcoplasmic reticulum (SR) Ca2+ leak in atrial myocytes, induced by mechanical stretch due to elevated pressure in the left atrium (LA), plays an essential role in the AF development in pressure-overloaded hearts. METHODS AND RESULTS: Isolated mouse atrial myocytes subjected to acute axial stretch displayed an immediate elevation of SR Ca2+ leak. Using a mouse model of transverse aortic constriction (TAC), the relation between stretch, SR Ca2+ leak, and AF susceptibility was further tested. At 36 h post-TAC, SR Ca2+ leak in cardiomyocytes from the LA (with haemodynamic stress), but not right atrium (without haemodynamic stress), significantly increased, which was further elevated at 4 weeks post-TAC. Accordingly, AF susceptibility to atrial burst pacing in the 4-week TAC mice were also significantly increased, which was unaffected by inhibition of atrial fibrosis or inflammation via deletion of galectin-3. Western blotting revealed that type 2 ryanodine receptor (RyR2) in left atrial myocytes of TAC mice was oxidized due to activation and up-regulation of Nox2 and Nox4. Direct rescue of dysfunctional RyR2 with dantrolene or rycal S107 reduced diastolic SR Ca2+ leak in left atrial myocytes and prevented atrial burst pacing stimulated AF. CONCLUSION: Our study demonstrated for the first time the increased SR Ca2+ leak mediated by enhanced oxidative stress in left atrial myocytes that is causatively associated with higher AF susceptibility in pressure-overloaded hearts.


Assuntos
Fibrilação Atrial/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Mecanorreceptores/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Potenciais de Ação , Animais , Antiarrítmicos/farmacologia , Aorta/fisiopatologia , Aorta/cirurgia , Pressão Arterial , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/prevenção & controle , Função do Átrio Esquerdo , Pressão Atrial , Remodelamento Atrial , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Galectina 3/genética , Galectina 3/metabolismo , Frequência Cardíaca , Ligadura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos
6.
Insect Biochem Mol Biol ; 125: 103453, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798712

RESUMO

The diamondback moth Plutella xylostella is a major destructive pest of Brassica worldwide. P. xylostella has evolved resistance to nearly all commercial insecticides used for its control, including the most recent chemical class, diamide insecticides. Several studies show that the G4946E and I4790M mutations of ryanodine receptor (RyR) are strongly associated with diamide resistance in insects. While the pivotal functional role of G4946E in conferring diamide resistance phenotype has confirmed by several studies in different species, no direct evidence has unambiguously confirmed the functional significance of the single I4790M mutation in diamide resistance. Here, we successfully constructed a knockin homozygous strain (I4790M-KI) of P. xylostella using CRISPR/Cas9 coupled with homology directed repair approach to introduce I4790M into RyR. When compared with the background susceptible IPP-S strain, the manipulated I4790M-KI strain exhibited moderate resistance to the phthalic acid diamide flubendiamide (40.5-fold) and low resistance to anthranilic diamides chlorantraniliprole (6.0-fold) and cyantraniliprole (7.7-fold), with no changes to the toxicities of indoxacarb and ß-cypermethrin. Furthermore, the acquired flubendiamide resistance was inherited in an autosomally recessive mode and significantly linked with the I4790M mutation of RyR in this I4790M-KI strain. Our findings provide in vivo functional evidence for the causality of I4790M mutation of PxRyR with moderate levels of resistance to flubendiamide in P. xylostella, and support the hypothesis that the diamide classes have different interactions with RyRs.


Assuntos
Diamida/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Benzamidas/farmacologia , Sistemas CRISPR-Cas , Sinalização do Cálcio/efeitos dos fármacos , Inativação Gênica , Genes de Insetos , Controle de Insetos , Mariposas/efeitos dos fármacos , Mutação , Controle de Pragas , Pirazóis/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Sulfonas/farmacologia , ortoaminobenzoatos/farmacologia
7.
Life Sci ; 260: 118234, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791148

RESUMO

AIMS: Our aim was to characterise the actions of novel BIT compounds with structures based on peptides and toxins that bind to significant regulatory sites on ryanodine receptor (RyR) Ca2+ release channels. RyRs, located in sarcoplasmic reticulum (SR) Ca2+ store membranes of striated muscle, are essential for muscle contraction. Although severe sometimes-deadly myopathies occur when the channels become hyperactive following genetic or acquired changes, specific inhibitors of RyRs are rare. MAIN METHODS: The effect of BIT compounds was determined by spectrophotometric analysis of Ca2+ release from isolated SR vesicles, analysis of single RyR channel activity in artificial lipid bilayers and contraction of intact and skinned skeletal muscle fibres. KEY FINDINGS: The inhibitory compounds reduced: (a) Ca2+ release from SR vesicles with IC50s of 1.1-2.5 µM, competing with activation by parent peptides and toxins; (b) single RyR ion channel activity with IC50s of 0.5-1.5 µM; (c) skinned fibre contraction. In contrast, activating BIT compounds increased Ca2+ release with an IC50 of 5.0 µM and channel activity with AC50s of 2 to 12 nM and enhanced skinned fibre contraction. Sub-conductance activity dominated channel activity with both inhibitors and activators. Effects of all compounds on skeletal and cardiac RyRs were similar and reversible. Competition experiments suggest that the BIT compounds bind to the regulatory helical domains of the RyRs that impact on channel gating mechanisms through long-range allosteric interactions. SIGNIFICANCE: The BIT compounds are strong modulators of RyR activity and provide structural templates for novel research tools and drugs to combat muscle disease.


Assuntos
Peptídeos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Retículo Sarcoplasmático/química , Animais , Biomimética , Cálcio/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Miocárdio/ultraestrutura , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Venenos de Escorpião , Ovinos
8.
Insect Biochem Mol Biol ; 125: 103454, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32781205

RESUMO

Ryanodine receptors (RyRs) are the molecular target of diamides, a new chemical class of insecticides. Diamide insecticides are used to control lepidopteran pests and were considered relatively safe for mammals and non-targeted beneficial insects, including honey bees. However, recent studies showed that exposure to diamides could cause long-lasting locomotor deficits of bees. Here we report the crystal structure of RyR N-terminal domain A (NTD-A) from the honeybee, Apis mellifera, at 2.5 Å resolution. It shows a similar overall fold as the RyR NTD-A from mammals and the diamondback moth (DBM), Plutella xylostella, and still several loops located at the inter-domain interfaces show insect-specific or bee-specific structural features. A potential insecticide-binding pocket formed by loop9 and loop13 is conserved in lepidopteran but different in both mammals and bees, making it a good candidate targeting site for the development of pest-selective insecticides. Furthermore, a conserved intra-domain disulfide bond was observed in both DBM and bee RyR NTD-A crystal structures, which explains their higher thermal stability compared to mammalian RyR NTD-A. This work provides a basis for the development of novel insecticides with better selectivity between pests and bees by targeting a distinct site on pest RyRs, which would be a promising strategy to overcome the current toxicity problem.


Assuntos
Abelhas/metabolismo , Inseticidas/toxicidade , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cristalografia/métodos , Diamida/toxicidade , Proteínas de Insetos/química , Proteínas de Insetos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/isolamento & purificação
9.
Sci Rep ; 10(1): 2199, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042141

RESUMO

We investigated effects of the ryanodine receptor (RyR) modulator caffeine on Na+ current (INa) activation and inactivation in intact loose-patch clamped murine skeletal muscle fibres subject to a double pulse procedure. INa activation was examined using 10-ms depolarising, V1, steps to varying voltages 0-80 mV positive to resting membrane potential. The dependence of the subsequent, INa inactivation on V1 was examined by superimposed, V2, steps to a fixed depolarising voltage. Current-voltage activation and inactivation curves indicated that adding 0.5 and 2 mM caffeine prior to establishing the patch seal respectively produced decreased (within 1 min) and increased (after ~2 min) peak INa followed by its recovery to pretreatment levels (after ~40 and ~30 min respectively). These changes accompanied negative shifts in the voltage dependence of INa inactivation (within 10 min) and subsequent superimposed positive activation and inactivation shifts, following 0.5 mM caffeine challenge. In contrast, 2 mM caffeine elicited delayed negative shifts in both activation and inactivation. These effects were abrogated if caffeine was added after establishing the patch seal or with RyR block by 10 µM dantrolene. These effects precisely paralleled previous reports of persistently (~10 min) increased cytosolic [Ca2+] with 0.5 mM, and an early peak rapidly succeeded by persistently reduced [Ca2+] likely reflecting gradual RyR inactivation with ≥1.0 mM caffeine. The latter findings suggested inhibitory effects of even resting cytosolic [Ca2+] on INa. They suggest potentially physiologically significant negative feedback regulation of RyR activity on Nav1.4 properties through increased or decreased local cytosolic [Ca2+], Ca2+-calmodulin and FKBP12.


Assuntos
Cafeína/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Dantroleno/farmacologia , Eletrofisiologia , Feminino , Homeostase/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Técnicas de Patch-Clamp , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sódio/metabolismo
10.
Am J Hypertens ; 33(5): 407-413, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32060500

RESUMO

BACKGROUND: Ryanodine receptor (RyR) dysfunction in skeletal muscle (RyR1) leads to malignant hyperthermia, and in cardiac muscle (RyR2) triggers cardiac arrhythmias. We hypothesized that RyR dysfunction in vascular smooth muscle could increase vascular resistance and hypertension, and may contribute to increased atrial fibrillation (AF) in hypertension. Thus, stabilizing RyR function with chronic dantrolene treatment may attenuate hypertension and AF inducibility in spontaneously hypertensive rats (SHR). METHODS: Male SHR (16 weeks old) were randomized into vehicle- (n = 10) and dantrolene-treated (10 mg/kg/day, n = 10) groups for 4 weeks. Wistar Kyoto (WKY, n = 11) rats served as controls. Blood pressures (BP) were monitored before and during the 4-week treatment. After 4-week treatment, direct BP, echocardiography, and hemodynamics were recorded. AF inducibility tests were performed in vivo at baseline and repeated under sympathetic stimulation (SS). RESULTS: Compared with WKY, SHR had significantly higher BP throughout the experimental period. Dantrolene treatment had no effect on BP levels in SHR (final systolic BP 212 ± 9 mm Hg in vehicle group vs. 208 ± 16 mm Hg in dantrolene group, P > 0.05). AF inducibility was very low and not significantly different between 5-month-old WKY and SHR at baseline. However, under SS, AF inducibility and duration were significantly increased in SHR (20% in WKY vs. 60% in SHR-vehicle, P<0.05). Dantrolene treatment significantly attenuated AF inducibility under SS in SHR (60% in vehicle vs. 20% in dantrolene, P < 0.05). CONCLUSIONS: Stabilizing RyR with chronic dantrolene treatment does not affect hypertension development in SHR. SHR has increased vulnerability to AF induction under SS, which can be attenuated with dantrolene treatment.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/prevenção & controle , Pressão Sanguínea , Dantroleno/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Coração/inervação , Hipertensão/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Hipertensão/complicações , Hipertensão/metabolismo , Masculino , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sistema Nervoso Simpático/fisiopatologia
11.
Proc Natl Acad Sci U S A ; 116(51): 25575-25582, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792195

RESUMO

The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca2+ from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation. Ca2+ alone induces a contraction of the central domain that facilitates the dilation of the S6 bundle but is insufficient to open the pore. The small-molecule agonist PCB95 helps Ca2+ to overcome the barrier for opening. FKBP12.6 induces a relaxation of the central domain that decouples it from the S6 bundle, stabilizing RyR2 in a closed state even in the presence of Ca2+ and PCB95. Although the channel is open when PCB95 is replaced by caffeine and adenosine 5'-triphosphate (ATP), neither of the modulators alone can sufficiently counter the antagonistic effect to open the channel. Our study marks an important step toward mechanistic understanding of the sophisticated regulation of this key channel whose aberrant activity engenders life-threatening cardiac disorders.


Assuntos
Regulação Alostérica/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Microscopia Crioeletrônica , Modelos Moleculares , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Suínos
12.
Am J Physiol Heart Circ Physiol ; 317(3): H561-H574, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274355

RESUMO

In the current study, the potential contributions of ryanodine receptors (RyRs) to intrinsic pumping and responsiveness to substance P (SP) were investigated in isolated rat mesenteric collecting lymphatic vessels. Responses to SP were characterized in lymphatic vessels in the absence or presence of pretreatment with nifedipine to block L-type Ca2+ channels, caffeine to block normal release and uptake of Ca2+ from the sarcoplasmic reticulum, ryanodine to block all RyR isoforms, or dantrolene to more selectively block RyR1 and RyR3. RyR expression and localization in lymphatics was also assessed by quantitative PCR and immunofluorescence confocal microscopy. The results show that SP normally elicits a significant increase in contraction frequency and a decrease in end-diastolic diameter. In the presence of nifedipine, phasic contractions stop, yet subsequent SP treatment still elicits a strong tonic contraction. Caffeine treatment gradually relaxes lymphatics, causing a loss of phasic contractions, and prevents subsequent SP-induced tonic contraction. Ryanodine also gradually diminishes phasic contractions but without causing vessel relaxation and significantly inhibits the SP-induced tonic contraction. Dantrolene treatment did not significantly impair lymphatic contractions nor the response to SP. The mRNA for all RyR isoforms is detectable in isolated lymphatics. RyR2 and RyR3 proteins are found predominantly in the collecting lymphatic smooth muscle layer. Collectively, the data suggest that SP-induced tonic contraction requires both extracellular Ca2+ plus Ca2+ release from internal stores and that RyRs play a role in the normal contractions and responsiveness to SP of rat mesenteric collecting lymphatics.NEW & NOTEWORTHY The mechanisms that govern contractions of lymphatic vessels remain unclear. Tonic contraction of lymphatic vessels caused by substance P was blocked by caffeine, which prevents normal uptake and release of Ca2+ from internal stores, but not nifedipine, which blocks L-type channel-mediated Ca2+ entry. Ryanodine, which also disrupts normal sarcoplasmic reticulum Ca2+ release and reuptake, significantly inhibited substance P-induced tonic contraction. Ryanodine receptors 2 and 3 were detected within the smooth muscle layer of collecting lymphatic vessels.


Assuntos
Sinalização do Cálcio , Vasos Linfáticos/metabolismo , Contração Muscular , Músculo Liso/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Masculino , Mesentério , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Ratos Sprague-Dawley , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Substância P/farmacologia
13.
Am J Physiol Cell Physiol ; 317(2): C358-C365, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166712

RESUMO

Cryoelectron microscopy and mutational analyses have shown that type 1 ryanodine receptor (RyR1) amino acid residues RyR1-E3893, -E3967, and -T5001 are critical for Ca2+-mediated activation of skeletal muscle Ca2+ release channel. De novo missense mutation RyR1-Q3970K in the secondary binding sphere of Ca2+ was reported in association with central core disease (CCD) in a 2-yr-old boy. Here, we characterized recombinant RyR1-Q3970K mutant by cellular Ca2+ release measurements, single-channel recordings, and computational methods. Caffeine-induced Ca2+ release studies indicated that RyR1-Q3970K formed caffeine-sensitive, Ca2+-conducting channel in HEK293 cells. However, in single-channel recordings, RyR1-Q3970K displayed low Ca2+-dependent channel activity and greatly reduced activation by caffeine or ATP. A RyR1-Q3970E mutant corresponds to missense mutation RyR2-Q3925E associated with arrhythmogenic syndrome in cardiac muscle. RyR1-Q3970E also formed caffeine-induced Ca2+ release in HEK293 cells and exhibited low activity in the presence of the activating ligand Ca2+ but, in contrast to RyR1-Q3970K, was activated by ATP and caffeine in single-channel recordings. Computational analyses suggested distinct structural rearrangements in the secondary binding sphere of Ca2+ of the two mutants, whereas the interaction of Ca2+ with directly interacting RyR1 amino acid residues Glu3893, Glu3967, and Thr5001 was only minimally affected. We conclude that RyR1-Q3970 has a critical role in Ca2+-dependent activation of RyR1 and that a missense RyR1-Q3970K mutant may give rise to myopathy in skeletal muscle.


Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Sítios de Ligação , Cafeína/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Células HEK293 , Humanos , Potenciais da Membrana , Músculo Esquelético/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Toxicol Sci ; 170(2): 509-524, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127943

RESUMO

Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and detected in tissues of living organisms. Although DDT owes its insecticidal activity to impeding closure of voltage-gated sodium channels, it mediates toxicity in mammals by acting as an endocrine disruptor (ED). Numerous studies demonstrate DDT/DDE to be EDs, but studies examining muscle-specific effects mediated by nonhormonal receptors in mammals are lacking. Therefore, we investigated whether o,p'-DDT, p,p'-DDT, o,p'-DDE, and p,p'-DDE (DDx, collectively) alter the function of ryanodine receptor type 1 (RyR1), a protein critical for skeletal muscle excitation-contraction coupling and muscle health. DDx (0.01-10 µM) elicited concentration-dependent increases in [3H]ryanodine ([3H]Ry) binding to RyR1 with o,p'-DDE showing highest potency and efficacy. DDx also showed sex differences in [3H]Ry-binding efficacy toward RyR1, where [3H]Ry-binding in female muscle preparations was greater than male counterparts. Measurements of Ca2+ transport across sarcoplasmic reticulum (SR) membrane vesicles further confirmed DDx can selectively engage with RyR1 to cause Ca2+ efflux from SR stores. DDx also disrupts RyR1-signaling in HEK293T cells stably expressing RyR1 (HEK-RyR1). Pretreatment with DDx (0.1-10 µM) for 100 s, 12 h, or 24 h significantly sensitized Ca2+-efflux triggered by RyR agonist caffeine in a concentration-dependent manner. o,p'-DDE (24 h; 1 µM) significantly increased Ca2+-transient amplitude from electrically stimulated mouse myotubes compared with control and displayed abnormal fatigability. In conclusion, our study demonstrates DDx can directly interact and modulate RyR1 conformation, thereby altering SR Ca2+-dynamics and sensitize RyR1-expressing cells to RyR1 activators, which may ultimately contribute to long-term impairments in muscle health.


Assuntos
DDT/toxicidade , Diclorodifenil Dicloroetileno/toxicidade , Músculo Esquelético/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Caracteres Sexuais
15.
Gen Physiol Biophys ; 38(2): 183-186, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30821253

RESUMO

Very recently, the diamide insecticide chlorantraniliprole was shown to induce Ca2+-release from sarcoplasmic reticulum (SR) vesicles isolated from mammalian skeletal muscle through the activation of the SR Ca2+ channel ryanodine receptor. As this result raises severe concerns about the safety of this chemical, we aimed to learn more about its action. To this end, single-channel analysis was performed, which showed that chlorantraniliprole induced high-activity bursts of channel opening that accounts for the Ca2+-releasing action described before.


Assuntos
Inseticidas , Canal de Liberação de Cálcio do Receptor de Rianodina , ortoaminobenzoatos , Animais , Cálcio , Diamida , Inseticidas/farmacologia , Músculo Esquelético , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Retículo Sarcoplasmático , ortoaminobenzoatos/farmacologia
16.
J Alzheimers Dis ; 67(1): 137-147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636740

RESUMO

BACKGROUND: Disruption of intracellular Ca2+ homeostasis and associated autophagy dysfunction contribute to neuropathology in Alzheimer's disease (AD). OBJECTIVE: To study the effects of propofol on cell viability via its effects on intracellular Ca2+ homeostasis, and the impact of autophagy, in a neuronal model of presenilin-mutated familial AD (FAD). METHODS: We treated PC12 cells, stably transfected with either mutated presenilin-1 (L286V) or wild type (WT) controls, with propofol at different doses and durations, in the presence or absence of extracellular Ca2+, antagonists of inositol trisphosphate receptors (InsP3R, xestospongin C) and/or ryanodine receptors (RYR, dantrolene), or an inhibitor of autophagy flux (Bafilomycin). We determined cell viability, cytosolic Ca2+ concentrations ([Ca2+]c), vATPase protein expression, and lysosomal acidification. RESULTS: The propofol dose- and time-dependently decreased cell viability significantly more in L286V than WT cells, especially at the pharmacological dose (>50µM), and together with bafilomycin (40 nM). Clinically used concentrations of propofol (<20µM) tended to increase cell viability. Propofol significantly increased [Ca2+]c more in L286V than in WT cells, which was associated with decrease of vATPase expression and localization to the lysosome. Both toxicity and increased Ca2+ levels were ameliorated by inhibiting InsP3R/RYR. However, the combined inhibition of both receptors paradoxically increased [Ca2+]c, by inducing Ca2+ influx from the extracellular space, causing greater cytotoxicity. CONCLUSION: Impairment in autophagy function acts to deteriorate cell death induced by propofol in FAD neuronal cells. Cell death is ameliorated by either RYR or InsP3R antagonists on their own, but not when both are co-administered.


Assuntos
Doença de Alzheimer/genética , Anestésicos Intravenosos/toxicidade , Autofagia/genética , Distúrbios do Metabolismo do Cálcio/genética , Distúrbios do Metabolismo do Cálcio/patologia , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Presenilina-1/genética , Propofol/toxicidade , Adenosina Trifosfatases/biossíntese , Animais , Distúrbios do Metabolismo do Cálcio/metabolismo , Humanos , Síndromes Neurotóxicas/metabolismo , Células PC12 , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos
17.
Toxicol Appl Pharmacol ; 366: 17-24, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30684528

RESUMO

Ryanodine receptors have an important role in the regulation of intracellular calcium levels in the nervous system and muscle. It has been described that ryanodine receptors influence keratinocyte differentiation and barrier homeostasis. Our goal was to examine the role of ryanodine receptors in the healing of full-thickness dermal wounds by means of in vitro and in vivo methods. The effect of ryanodine receptors on wound healing, microcirculation and inflammation was assessed in an in vivo mouse wound healing model, using skin fold chambers in the dorsal region, and in HaCaT cell scratch wound assay in vitro. SKH-1 mice were subjected to sterile saline (n = 36) or ryanodine receptor agonist 4-chloro-m-cresol (0.5 mM) (n = 42) or ryanodine receptor antagonist dantrolene (100 µM) (n = 42). Application of ryanodine receptor agonist 4-chloro-m-cresol did not influence the studied parameters significantly, whereas ryanodine receptor antagonist dantrolene accelerated the wound closure. Inhibition of the calcium channel also increased the vessel diameters in the wound edges during the process of healing and increased the blood flow in the capillaries at all times of measurement. Furthermore, application of dantrolene decreased xanthine-oxidoreductase activity during the inflammatory phase of wound healing. Inhibition of ryanodine receptor-mediated effects positively influence wound healing. Thus, dantrolene may be of therapeutic potential in the treatment of wounds.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Dantroleno/farmacologia , Queratinócitos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/tratamento farmacológico , Animais , Velocidade do Fluxo Sanguíneo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos Pelados , Microcirculação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Pele/irrigação sanguínea , Pele/lesões , Pele/metabolismo , Fatores de Tempo , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia , Ferimentos Penetrantes/fisiopatologia , Xantina Desidrogenase/metabolismo
18.
CNS Neurol Disord Drug Targets ; 18(9): 668-676, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29921212

RESUMO

Dantrolene, a ryanodine receptor antagonist, is primarily known as the only clinically acceptable and effective treatment for Malignant Hyperthermia (MH). Inhibition of Ryanodine Receptor (RyR) by dantrolene decreases the abnormal calcium release from the Sarcoplasmic Reticulum (SR) or Endoplasmic Reticulum (ER), where RyR is located. Recently, emerging researches on dissociated cells, brains slices, live animal models and patients have demonstrated that altered RyR expression and function can also play a vital role in the pathogenesis of Alzheimer's Disease (AD). Therefore, dantrolene is now widely studied as a novel treatment for AD, targeting the blockade of RyR channels or another alternative pathway, such as the inhibitory effects of NMDA glutamate receptors and the effects of ER-mitochondria connection. However, the therapeutic effects are not consistent. In this review, we focus on the relationship between the altered RyR expression and function and the pathogenesis of AD, and the potential application of dantrolene as a novel treatment for the disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cálcio/metabolismo , Dantroleno/farmacologia , Hipertermia Maligna/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Músculo Esquelético/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos
19.
Heart Rhythm ; 16(4): 615-623, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30445170

RESUMO

BACKGROUND: The apamin-sensitive small-conductance calcium-activated K (SK) current IKAS modulates automaticity of the sinus node. IKAS blockade by apamin causes sinus bradycardia. OBJECTIVE: The purpose of this study was to test the hypothesis that IKAS modulates ventricular automaticity. METHODS: We tested the effects of apamin (100 nM) on ventricular escape rhythms in Langendorff-perfused rabbit ventricles with atrioventricular block (protocol 1) and on recorded transmembrane action potential of pseudotendons of superfused right ventricular endocardial preparations (protocol 2). RESULTS: All preparations exhibited spontaneous ventricular escape rhythms. In protocol 1, apamin decreased the atrial rate from 186.2 ± 18.0 bpm to 163.8 ± 18.7 bpm (N = 6; P = .006) but accelerated the ventricular escape rate from 51.5 ± 10.7 bpm to 98.2 ± 25.4 bpm (P = .031). Three preparations exhibited bursts of nonsustained ventricular tachycardia and pauses, resulting in repeated burst termination pattern. In protocol 2, apamin increased the ventricular escape rate from 70.2 ± 13.1 bpm to 110.1 ± 2.2 bpm (P = .035). Spontaneous phase 4 depolarization was recorded from the pseudotendons in 6 of 10 preparations at baseline and in 3 in the presence of apamin. There were no changes of phase 4 slope (18.37 ± 3.55 mV/s vs 18.93 ± 3.26 mV/s, N = 3; P = .231, ), but the threshold of phase 0 activation (mV) reduced from -67.97 ± 1.53 to -75.26 ± 0.28 (P = .034). Addition of JTV-519, a ryanodine receptor 2 stabilizer, in 5 preparations reduced escape rate back to baseline. CONCLUSION: Contrary to its bradycardic effect in the sinus node, IKAS blockade by apamin accelerates ventricular automaticity and causes repeated nonsustained ventricular tachycardia in normal ventricles. ryanodine receptor 2 blockade reversed the apamin effects on ventricular automaticity.


Assuntos
Apamina/farmacologia , Bloqueio Atrioventricular/tratamento farmacológico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Taquicardia Ventricular/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Bloqueio Atrioventricular/fisiopatologia , Ramos Subendocárdicos/fisiologia , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia
20.
Circulation ; 138(11): 1144-1154, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-29593014

RESUMO

BACKGROUND: Advances in congestive heart failure (CHF) management depend on biomarkers for monitoring disease progression and therapeutic response. During systole, intracellular Ca2+ is released from the sarcoplasmic reticulum into the cytoplasm through type-2 ryanodine receptor/Ca2+ release channels. In CHF, chronically elevated circulating catecholamine levels cause pathological remodeling of type-2 ryanodine receptor/Ca2+ release channels resulting in diastolic sarcoplasmic reticulum Ca2+ leak and decreased myocardial contractility. Similarly, skeletal muscle contraction requires sarcoplasmic reticulum Ca2+ release through type-1 ryanodine receptors (RyR1), and chronically elevated catecholamine levels in CHF cause RyR1-mediated sarcoplasmic reticulum Ca2+ leak, contributing to myopathy and weakness. Circulating B-lymphocytes express RyR1 and catecholamine-responsive signaling cascades, making them a potential surrogate for defects in intracellular Ca2+ handling because of leaky RyR channels in CHF. METHODS: Whole blood was collected from patients with CHF, CHF following left-ventricular assist device implant, and controls. Blood was also collected from mice with ischemic CHF, ischemic CHF+S107 (a drug that specifically reduces RyR channel Ca2+ leak), and wild-type controls. Channel macromolecular complex was assessed by immunostaining RyR1 immunoprecipitated from lymphocyte-enriched preparations. RyR1 Ca2+ leak was assessed using flow cytometry to measure Ca2+ fluorescence in B-lymphocytes in the absence and presence of RyR1 agonists that empty RyR1 Ca2+ stores within the endoplasmic reticulum. RESULTS: Circulating B-lymphocytes from humans and mice with CHF exhibited remodeled RyR1 and decreased endoplasmic reticulum Ca2+ stores, consistent with chronic intracellular Ca2+ leak. This Ca2+ leak correlated with circulating catecholamine levels. The intracellular Ca2+ leak was significantly reduced in mice treated with the Rycal S107. Patients with CHF treated with left-ventricular assist devices exhibited a heterogeneous response. CONCLUSIONS: In CHF, B-lymphocytes exhibit remodeled leaky RyR1 channels and decreased endoplasmic reticulum Ca2+ stores consistent with chronic intracellular Ca2+ leak. RyR1-mediated Ca2+ leak in B-lymphocytes assessed using flow cytometry provides a surrogate measure of intracellular Ca2+ handling and systemic sympathetic burden, presenting a novel biomarker for monitoring response to pharmacological and mechanical CHF therapy.


Assuntos
Linfócitos B/metabolismo , Sinalização do Cálcio , Cálcio/sangue , Retículo Endoplasmático/metabolismo , Insuficiência Cardíaca/sangue , Canal de Liberação de Cálcio do Receptor de Rianodina/sangue , Idoso , Animais , Linfócitos B/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Estudos de Casos e Controles , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Coração Auxiliar , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Norepinefrina/sangue , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Tiazepinas/farmacologia , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...